Plant Archives Vol. 25, Special Issue (ICTPAIRS-JAU, Junagadh) Jan. 2025 pp. 571-576

e-ISSN:2581-6063 (online), ISSN:0972-5210

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2025.v25.SP.ICTPAIRS-080

BRINJAL (SOLANUM MELONGENA L.) CROP RESPONSE TO FERTIGATION LEVELS UNDER SURFACE AND SUBSURFACE DRIP IRRIGATION

S.A. Gevariya^{1*}, N. M. Marakna², B. V. Patoliya¹, S. V. Kelaiya¹, Y. H. Ghelani¹ and G. V. Prajapati¹

¹Junagadh Agricultural University, Junagadh, Gujarat, India. ²Soil Testing Laboratory, Junagadh Agricultural University, Junagadh, Gujarat, India. *Corresponding author E-mail: sagevariya@jau.in.

A field experiment was conducted to determine the optimum fertilizer requirement through surface and subsurface drip fertigation in brinjal (*Solanum melongena* L.) crop. The brinjal crop was transplanted at 0.6 row to row x 1.2 pair to pair x 0.6 m plant to plant spacing. The drip system was having inline lateral of 4 lph dripper at 0.6 m spacing. Each lateral was kept at 1.8 mspacing, each one served a pair of rows. The irrigation was scheduled at Irrigation water/Crop evapotranspiration of 1.0. The maximum yield of brinjal was found to be 37940 kg/ha under subsurface drip irrigation with 80% RDF. The maximum benefit cost ratio of 9.07 was found under subsurface drip irrigation with 80% RDF.

Key word: Benefit cost ratio, Brinjal, Subsurface drip irrigation, Surface drip irrigation

Introduction

Drip irrigation is the slow, even application of lowpressure water to soil and plants using plastic tubing placed near the plants' root zone. It is an alternative to sprinkler or furrow methods of irrigating crops. Drip irrigation can be used for crops with high or low water demands. Drip irrigation can help highest water use efficiently. A well-designed drip irrigation system loses practically no water to runoff, deep percolation and evaporation. Drip irrigation reduces water contact with crop leaves, stems and fruit. Thus, conditions may be less favourable for disease development. Irrigation scheduling can be managed precisely to meet crop demands, holding the promise of increased yield and quality. Growers and irrigation professionals often refer to "subsurface drip irrigation" or SDI. When a drip tape or tube is buried below the soil surface, it is less vulnerable to damage during cultivation or weeding. With SDI, water use efficiency is maximized because there is even less evaporation or runoff. Agricultural chemicals can be applied more efficiently with drip irrigation.

Drip irrigation system is one of the advanced methods of irrigation and the use of drip irrigation system has become wide spread in recent years especially in areas where water is scarce. The system is popular in arid and semi-arid regions with high evaporation, scarcity of water and salt problems. Cetin O. and Akalp E. (2019) observed that drip irrigation can be able to save irrigation water from 30% to 50% in case it is properly designed, installed and operated compared to surface irrigation and it can also enable increasing crop yields and crop quality.

Brinjal is one of the most common vegetables grown throughout the country for its purple, green and white pendulous vegetable. It is the member of the Solanaceae family and is closely related to potato and tomato. Brinjal is popular vegetable and is native of India. It can be grown throughout the year in almost all the states of India except at higher altitudes. According to Horticultural Statistics -2018 India produces about 12.8 Million ton of brinjal from an area of 0.73 Mha (Million ha) with an average productivity of 17.53 t/ha. The brinjal producing states are West Bengal, Orissa, Gujarat, Madhya Pradesh, Bihar, Chattishgarh, Karnataka, Andhra Pradesh, Maharashtra and Haryana. In Gujarat, brinjal is grown in 0.071 Mha area with production of 1.423 Million ton with 11.89% share of India and productivity of 21.14 t/ha. (Gevariya and Rank, 2022). The major brinjal producing belts in West Bengal are Hoogly, 24-Paraganas and Burdwan.

Material and Methods

Location

The experiment was conducted at the Research-cum-Demonstration Farm, Center of Excellence on Soil and Water Management, Research Testing and Training Centre, CAET, Junagadh Agricultural University, Junagadh. It is located at 21.5°N latitude and 70.44°E longitude with an altitude of 50 meter above mean sea level.

Crop

The brinjal (*Solanum melongena* L.) variety was taken as test crop. The duration of crop was 130 to 150 days.

Treatments

Factor-I: Drip irrigation method (Ii)

I1–Surface drip

I2-Subsurface drip Factor

II: Drip fertigation level (Fi)

F1 - 0.6 RDF

F2 - 0.8 RDF

F3 - 1.0 RDF

Surface and subsurface drip installation

Surface and subsurface drip irrigation systems were installed according to the plan of experiment (shown in Fig. 1) using 16 mm inline laterals with emitters of 4lph discharged spaced at 60 cm. Furrows of 20 cm depths

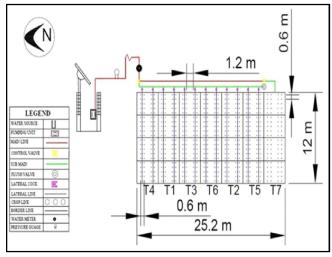


Fig. 1: Field Layout.

Treatment		Drip irrigation method + Drip fertigation level
T1	I1F1	Surface drip + 60% RDF
T2	I1F2	Surface drip + 80% RDF
T3	I1F3	Surface drip + 100% RDF
T4	I2F1	Subsurface drip + 60% RDF
T5	I2F2	Subsurface drip + 80% RDF
T6	I2F3	Subsurface drip + 100% RDF
T7	Farmers practices as control	Surface (flood) irrigation + 100% RDF
		10070 KDF

and 12 m lengths were made using a tractor drawn furrow opener. For the subsurface drip irrigation system the laterals were buried at 20 cm depth and were covered with the soil. The drip irrigation system considered of following components:

Main, sub mains and manifolds

Irrigation water was delivered from the well to the field through HDPE mainline of 63 mm diameter. Sub mail lines of 63 mm diameter with control valves were connected to main in order to distribute water to individual plots.

Laterals

The inline laterals of 16 mm diameter having 4 lph dripper discharge and 60 cm dripper spacing were connected to sub main with the help of take off and grommets. The ends of the laterals were closed with end plugs.

Control valve

The control valves were fitted at venturi, filtration unit, by pass assembly and at sub main to divert the water to respective plots during irrigation and fertigation.

Table 2: Agronomical practices.

Sr.	Particulars	Details
1	Cron	Brinjal (Solanum
1	Crop	melongena L.)
2	Variaty	Gujarat Junagadh Long
2	Variety	Brinjal - 4 (GJLB-4)
3	Seed rate	0.4 kg/ha
4	Fertilizer dose	100:37.5:37.5
4	(N:P:K)	kg/ha
5	Weeding	Manually
5	Weeding	(four time in a season)
6	Invigation prostings	Three days interval
0	Irrigation practices	as per treatments
7	Eastigation	Applied water soluble
	Fertigation	N and K fertilizer and
8	Spraying pesticides,	Manually as per
l °	insecticides and Fungicides	disease indication

Filter

In order to have filtering irrigation water, screen and disc filter with the capacity of 40m³/hr were installed after pumping and fertigation unit, respectively.

Pressure gauges

Pressure gauges were fitted at the control unit for monitoring the fertigation and filtration unit by checking the operating pressures during irrigation and fertigation events.

Venturi manifold

Venturi manifold with 3/4 inches size consisting of gate valve, service saddle and female threaded outlet for venturi inlet-outlet connections as fertilizer injection device was connected to the system. Venturi works on the principle of pressure difference which was created with the help of control valves fitted to the main line.

Results and Discussion

Plant height

The data on the effect of lateral irrigation method and fertigation level on plant height at 30, 60 and 90 DAT along with statistical inferences are presented in Table 3.

Effect of irrigation method on plant height

Different irrigation method significantly influenced the plant height at different days as 30, 60 and 90 DAT (Table 3). At 30 DAT, the highest plant height was observed in $I_2(29.33 \text{ cm})$ and the lowest was observed in $I_1(25.90 \text{ cm})$. At 90 DAT, the highest plant height was observed in $I_2(65.67 \text{ cm})$ and the lowest was observed in $I_1(63.77 \text{ cm})$.

Effect of Fertigation on plant height

The application of fertigation significantly influenced

Table 3:Effect of irrigation method (I) and fertigation level
(F) on brinjal height.

(a) Irrigation method				
Treatments	30 days	60 days	90 days	
I1	25.90	52.40	63.77	
12	29.33	54.33	65.67	
S.Em±	0.59	0.64	0.58	
CD	1.74	1.89	1.72	
	(b) Fertigation level			
F1	26.10ª	51.75ª	63.25ª	
F2	27.65 ^{ab}	53.0 ^{ab}	64.85 ^{ab}	
F3	29.10 ^b	55.30 ^b	66.05 ^b	
S.Em±	0.72	0.78	0.71	
CD	2.13	2.31	2.10	
INTERACTIONS				
I×F	NS	NS	NS	
C.V.	7.35	4.12	3.10	

Table 4:	Interaction effect of irrigation method (I) and
	fertigation level (F) on brinjal height.

Sr.	Plant height	Fertigation	Irrigation	
No	at DAT	level	method	
1	30	Treatments	I ₁	\mathbf{I}_{2}
		\mathbf{F}_{1}	24.5	27.7
		\mathbf{F}_{2}	25.9	29.4
		F ₃	27.3	30.9
		S.Em±	1.()1
		CD	N	S
		CV	7.35	
2	60	Treatments	I,	I ₂
		F ₁	50.4	53.1
		\mathbf{F}_{2}	52.2	53.9
		F ₃	54.6	56
		S.Em±	1.1	
		CD	NS	
		CV	4.12	
3	90	Treatments	I ₁	
		F ₁	62.4	64.1
		\mathbf{F}_{2}	64	65.7
		F ₃	64.9	67.2
		S.Em±	1.00	
		CD	NS	
		CV	3.10	

the plant height at different days as 30, 60 and 90 DAT (Table 3). It was observed that the plant height increased with increase in fertigation level. At 30 DAT, the highest plant height was observed in $F_3(29.10 \text{ cm})$ and the lowest was observed in $F_1(26.10 \text{ cm})$. At 90 DAT, the highest plant height was observed in $F_3(66.05 \text{ cm})$ and the lowest was observed in $F_1(63.25 \text{ cm})$.

Interaction effect on plant height

Data regarding interaction between irrigation method and fertigation level is presented in Table 4. The result revealed that there was no significant difference observed in plant height due to interaction effect of irrigation method and fertigation level at 30 DAT, 60 DAT and 90 DAT. The highest plant height was observed in treatment $T_6(67.20 \text{ cm})$ and lowest in $T_1(62.40 \text{ cm})$. This may be due to increase in nutrient levels which enhance nutrient absorption, greater photosynthesis and proper distribution of the generated assimilates. Similar results were reported by Pavan *et al.*, (2021). They observed that subsurface drip irrigation and fertigation regimes caused significant variations on plant height.

Number of fruits per plant

The data on the effect of irrigation method and fertigation level on number of fruits per plant along with statistical inferences are presented in Table 5.

(a) Irrigation method		
Treatments No. of fruits per plant		
\mathbf{I}_{1}	16.11	
I_2	18.14	
S.Em±	0.4745	
CD	1.4097	
(b) Fertigation level		
F ₁	15.11	
F ₂	18.32ª	
F ₃	17.96ª	
S.Em±	0.5811	
CD	1.7266	
INTERACTIONS		
S.Em±	0.8218	
C.V.%	9.5966	

Table 5: Effect of irrigation method (I) and fertigation level(F) on number of fruitper plant.

Effect of irrig	ation method	on number	of fruits	per	plant

It is apparent from the data presented in Table 5 that number of fruits per plant was significantly influenced by different methods of irrigation. The number of fruits per plant was found to be highest in I_2 (18.14) and lowest in I_1 (16.11).

Interaction effect

Data regarding interaction between irrigation method and fertigation level on number of fruits per plant are presented in Table 6. The result reveled that there was no significant difference observed in number of fruits per plant due to interaction effect of irrigation method and fertigation level. However, highest number of fruits per plant was observed in treatment T_5 (19.75) and lowest in T₁ (13.67). Esmail et al., (2016) was carried out experiment during 2014 and 2015 to study the effect of subsurface drip irrigation comparing with the surface on yield, number of fruits per tree and fruit quality of orange trees. They found that fruit number per tree was different among different irrigation systems and the subsurface drip irrigation treatment recorded the highest number of fruit while lowest number of fruit was observed in the surface drip irrigation treatment.

Table 6:	Interaction effect of irrigation method (I) and
	fertigation level (F) on no of fruit per plant.

Treatments	Irrigation method		
Treatments	\mathbf{I}_1	I_2	
F ₁	13.67	16.54	
F ₂	16.88	19.75	
F ₃	17.79	18.13	
S.Em±	0.8218		
CD	NS		
CV	9.5966		

Table 7:	Effect of irrigation method (I) and fertigation level
	(F) on brinjal yield.

(a) Irrigation method		
Treatments	No. of fruits per plant	
I ₁	31171.33	
I ₂	35539.33	
S.Em±	569.44	
CD	1691.95	
(b)	Fertigation level	
F ₁	30469.00	
F ₂	34632.00ª	
F ₃	34965.00ª	
S.Em±	697.42	
CD	2072.21	
INTERACTIONS		
S.Em±	986.29	
C.V.%	5.91	

Fruit yield

The data pertaining on the effect of irrigation method and fertigation level on fruit yield (kg/ha) of brinjal are presented in Table 7.

Effect of irrigation method

The application of irrigation significantly influenced the fruit yield (Table 7). The higher fruit yield was found under subsurface irrigation as compared to surface irrigation. The highest fruit yield was observed in $I_2(35539.33 \text{ kg/ha})$ and the lowest was observed in $I_1(31171.33 \text{ kg/ha})$.

Effect of fertigation level

The application of fertigation significantly influenced the fruit yield at fertigation level (Table 7). It was observed that the fruit yield increased within creased in fertigation level. The highest fruit yield was observed in $F_3(34965.00 \text{ kg/ha})$ and the lowest was observed in F_1 (30469.00 kg/ha).

Interaction effect

The observations regarding interaction between irrigation method and fertigation level on fruit yield of brinjal are presented in Table 8. The result reveled that

Table 8: Interaction effect of irrigation method (I) and
fertigation level (F) on brinjal yield.

Treatments	Irrigation method		
Treatments	\mathbf{I}_1	I_2	
F ₁	28632	32306	
F ₂	31324	37940	
F ₃	33558	36372	
S.Em±	986.29		
CD	NS		
CV	5.9139		

Yield (kg/ha)	Treatment	Treatment details	Water applied (mm)	WUE (kg/hamm)	Water saving (%)
28632	T ₁	$\mathbf{I}_{1}\mathbf{F}_{1}$		47.25	
31324	T ₂	I_1F_2		51.69	
33558	T ₃	I_1F_3	606	55.38	29.53%
32306	T ₄	I_2F_1	000	53.31	29.33%
37940	T ₅	I_2F_2		62.61	
36372	T ₆	I_2F_3		60.02	
31896	T ₇	Farmers practices as control	860	37.09	-
N	Note I_1 : surface drip, I_2 : sub surface drip. F_1 , F_2 and F_3 is 60%, 80% and 100% RDF, respectively				6 RDF, respectively

Table 9: Water use efficiency and water saving of brinjal as affected by different treatment.

there was no significant difference observed in brinjal yield due to interaction effect of irrigation method and fertigation level. However, the highest fruit yield was observed in treatment T5 (37940 kg/ha) and lowest in T1 (28632 kg/ha). Similar results were reported by Wang *et al.*, (2022). They found that largest percentage increase in yield in Subsurface drip irrigation as compared to surface drip irrigation and it was observed in crops (6.42%), followed by vegetables (5.29%) and fruits (3.37%), respectively.

The reason for the higher crop performance under 100% RDF was due to recommended dose of fertilizer application which resulted in adequate nutrient availability to plant.

The highest fruit yield (49.8 t/ha), highest net income (2,76,656 /ha) and maximum B:C ratio (2.61) were recorded under the treatment combination of plant spacing of S3-175-50×50 cm with irrigation level I1-100 per cent ET_{crop} and fertigation level F1-100 per cent RDF through drip which was found to be superior over the rest of treatment combinations reported by Ughade and Mahadkar (2015).

Brinjal crop performance under farmer's practice

First irrigation after transplanting was done of 60 mm depth after that 40 mm depth of irrigation water was applied to brinjal crop under surface irrigation treatment (farmer's practice). Second irrigation applied 40 mm depth and 5 days after transplanting. Irrigation was scheduled 40 mm depth at 7 days interval in

Treat-	Yield	Fertilizer	FUE
ment	(kg/ha)	(kg)	(kg/kg-ha)
T ₁	28632	105	272.69
T ₂	31324	140	223.74
T ₃	33558	175	191.76
T ₄	32306	105	307.68
T ₅	37940	140	271.00
T ₆	36372	175	207.84
T ₇	31896	175	182.26

November, December, January and February, while in March and April months, it was 40 mm depth at 5 days interval. Thus, the total water applied through the season in surface irrigation treatment (farmer's practice) was 860 mm. Full dose of Phosphorus and Potash was given as a basal dose. 50% Nitrogen of RDF applied after 30 days after transplantation and 50% Nitrogen applied at flowering stage in form of Urea.

Water use efficiency, fertilizer use efficiency, water saving and fertilizer saving

The data regarding water saving and water use efficiency are presented in Table 9. There was a saving in irrigation water to the tune of 29.53% through dripirrigation system as compared to farmer's practice. It shows highest water use efficiency was 62.61 kg/hamm reported in subsurface drip irrigation with 80% RDF and lowest was 47.25 kg/ha-mm reported in surface drip irrigation with 60% RDF.

Fertilizer use efficiency

The data on fertilizer use efficiency are given graphically in Table 10, which indicates that I_2 (subsurface drip irrigation) with fertigation level F_1 gave highest fertilizer use efficiency of 307.68 kg/kg-ha and lowest of 182.26 kg/kg-ha under control treatment (farmer's practice).

Treatment's combinations of irrigation method and fertigation treatments are given in Table 10. Higher fertilizer use efficiency was found in combination treatment $T_4(307.68 \text{ kg/kg} \text{ ha})$ and $T_1(272.69 \text{ kg/kg} \text{-ha})$ and lower in treatment T_7 (182.26 kg/kg-ha) and $T_3(191.76 \text{ kg/kg} \text{-ha})$. This is because the yields were comparatively higher and the fertilizers used were lower resulting into higher fertilizer use efficiency. Within the drip system, subsurface drip irrigation gave higher fertilizer use efficiency as compared to surface drip system and conventional method of fertilizer broadcasting. Drip fertigation provides an efficient method of fertilizer delivery and if properly managed it can reduce overall fertilizer application rates and minimizes the adverse environmental

impact on crop production as reported by Fanish and Muthukrishnan (2013).

Fertilizer saving

The comparison results under T_7 treatment (farmer's practice) with T_5 treatment (subsurface drip irrigation with 80% RDF) indicated that 20% fertilizer saving as compared to farmer's practice.

Similar result was found by Sindhu *et al.*, (2019). They found rice and wheat needed 20% less N fertilizer under subsurface drip fertigation system to obtain grain yields similar to that under flood irrigated crops.

Conclusion

The maximum Brinjal fruit yield can be 37940 kg/ha and 33558 kg/ha under subsurface and surface drip irrigation when it is fertigated at 80% and 100% RDF. The higher water and fertilizer use efficiency can be obtained as 62.61 kg/ha-mm and 307.68 kg/kg-ha respectively under fertigation of 100% and 60%.

The optimum dose of fertilizer can be 80% and 100% of RDF for brinjal crop if fertigated and irrigated through subsurface and surface drip system. The adoption of subsurface drip system can increase brinjal yield with 20% fertilizer saving over surface drip.

References

Cetin, O. and Akalp E. (2019). Efficient use of water and fertilizers in irrigated agriculture: drip irrigation and fertigation. *Acta Horticulturae et Regiotecturae*, **22(2)**, 97-102.

- Esmail, GE., Merwad M.A., Mostafa A.A.M. and Saleh M.M. (2016). The beneficial effect of subsurface drip irrigation system on yield, fruit quality and leaf mineral content of Valencia orange trees. *International Journal of ChemTech Research*, 9(8), 70-76.
- Fanish, S.A. and Muthukrishnan P. (2013). Nutrient distribution under dripfertigation systems. World Journal of Agricultural Sciences, 9(3), 277-283.
- Gevariya, S.A. and Rank H.D. (2022). Techno-economic evaluation of solar pump using surface and subsurface drip fertigation in brinjal (*Solanum melongena* L.) crop. *The Pharma Innovation*, **11**(11), 1585-1587.
- Pavan, D.G, Somasundaram S., Avudaithai S. and Nithila S. (2021). Effect of subsurface drip irrigation-fertigation regimes on high density cotton cultivation in sodic soil. *International Journal of Chemical Studies*, 9(1), 782-785.
- Sindhu, H.S., Jat M.L., Singh Y., Sidhu R.K., Gupta N., Singh P., Singh P., Jat H.S. and Gerard B. (2019). Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency. *Agricultural Water Management*, 216, 273-283.
- Ughade, S.R. and Mahadkar U.V. (2015). Effect of different planting density, irrigation and fertigation levels on growth and yield of brinjal (*Solanummelongena* L.). *The Bioscan*, **10**(3), 1205-1211.
- Wang, H., Wang N., Quan H., Zhang F., Fan J., Feng H., Cheng M., Liao Z., Wang X. and Xiang Y. (2022). Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis. *Agricultural Water Management*, **269**, 107645.